Skip to main content

Application Blueprint

The Quantum Platform Application Blueprint defines the complete application architecture, design patterns, and implementation guidelines for building intent-driven orchestration systems.

Blueprint Overview

This blueprint serves as the definitive guide for:

  • Application Architecture: System design and component relationships
  • Design Patterns: Reusable patterns for common scenarios
  • Implementation Guidelines: Best practices and standards
  • Quality Gates: Non-functional requirements and validation criteria

Application Architecture

Core Application Stack

graph TB
subgraph "Presentation Layer"
WebUI[Web UI<br/>Next.js + React]
MobileUI[Mobile UI<br/>React Native]
CLI[CLI Interface<br/>Python/Go]
end

subgraph "API Layer"
Gateway[API Gateway<br/>FastAPI]
Auth[Auth Service<br/>JWT + OAuth2]
RateLimit[Rate Limiting<br/>Redis-based]
end

subgraph "Business Logic Layer"
IntentService[Intent Service<br/>CRUD + Validation]
OrchestrationService[Orchestration Service<br/>Workflow Engine]
ModuleService[Module Service<br/>Plugin Architecture]
end

subgraph "Data Access Layer"
Repository[Repository Pattern<br/>Data Abstraction]
Cache[Cache Layer<br/>Redis]
Database[Database<br/>PostgreSQL]
end

subgraph "Infrastructure Layer"
MessageQueue[Message Queue<br/>Azure Event Hubs]
Storage[Blob Storage<br/>Azure Storage]
Monitoring[Monitoring<br/>OpenTelemetry]
end

WebUI --> Gateway
MobileUI --> Gateway
CLI --> Gateway

Gateway --> Auth
Gateway --> RateLimit
Gateway --> IntentService
Gateway --> OrchestrationService

IntentService --> Repository
OrchestrationService --> ModuleService
ModuleService --> MessageQueue

Repository --> Cache
Repository --> Database
ModuleService --> Storage

Gateway --> Monitoring
IntentService --> Monitoring
OrchestrationService --> Monitoring

Design Patterns

1. Intent-Driven Pattern

Purpose: Enable declarative system behavior through intent specifications

Implementation:

class Intent:
def __init__(self, tenant_id: str, name: str, definition: dict):
self.tenant_id = tenant_id
self.name = name
self.definition = definition
self.status = IntentStatus.DRAFT
self.version = 1

def validate(self) -> ValidationResult:
"""Validate intent definition against schema"""
pass

def execute(self) -> ExecutionResult:
"""Execute intent through orchestrator"""
pass

Benefits:

  • Declarative configuration
  • Self-documenting code
  • Easy testing and validation
  • Version control friendly

2. Repository Pattern

Purpose: Abstract data access and provide a clean interface for data operations

Implementation:

class IntentRepository:
def __init__(self, db: AsyncSession):
self.db = db

async def create(self, intent: Intent) -> Intent:
"""Create new intent"""
pass

async def get_by_id(self, intent_id: str) -> Optional[Intent]:
"""Get intent by ID"""
pass

async def get_by_tenant(self, tenant_id: str) -> List[Intent]:
"""Get all intents for tenant"""
pass

async def update(self, intent: Intent) -> Intent:
"""Update existing intent"""
pass

async def delete(self, intent_id: str) -> bool:
"""Delete intent"""
pass

Benefits:

  • Data access abstraction
  • Testability
  • Database independence
  • Consistent interface

3. Orchestrator Pattern

Purpose: Coordinate complex workflows and manage execution state

Implementation:

class WorkflowOrchestrator:
def __init__(self, intent_registry: IntentRegistry, module_registry: ModuleRegistry):
self.intent_registry = intent_registry
self.module_registry = module_registry

async def execute_intent(self, intent_id: str) -> ExecutionResult:
"""Execute intent through workflow orchestration"""
intent = await self.intent_registry.get(intent_id)
workflow = self.create_workflow(intent)
return await self.execute_workflow(workflow)

def create_workflow(self, intent: Intent) -> Workflow:
"""Create workflow from intent definition"""
pass

async def execute_workflow(self, workflow: Workflow) -> ExecutionResult:
"""Execute workflow with error handling and retry logic"""
pass

Benefits:

  • Workflow management
  • Error handling and recovery
  • Progress tracking
  • Scalability

4. Module Plugin Pattern

Purpose: Enable extensible business logic through pluggable modules

Implementation:

class ModuleInterface(ABC):
@abstractmethod
async def execute(self, context: ExecutionContext) -> ModuleResult:
"""Execute module logic"""
pass

@abstractmethod
def get_capabilities(self) -> List[Capability]:
"""Return module capabilities"""
pass

class ModuleRegistry:
def __init__(self):
self.modules: Dict[str, ModuleInterface] = {}

def register(self, name: str, module: ModuleInterface):
"""Register module"""
self.modules[name] = module

def get(self, name: str) -> Optional[ModuleInterface]:
"""Get module by name"""
return self.modules.get(name)

Benefits:

  • Extensibility
  • Modularity
  • Testability
  • Reusability

Application Components

1. API Gateway Service

Purpose: Central entry point for all client requests

Key Responsibilities:

  • Request routing and load balancing
  • Authentication and authorization
  • Rate limiting and throttling
  • Request/response transformation
  • API documentation generation

Configuration:

# FastAPI application setup
app = FastAPI(
title="Quantum Platform API",
version="1.0.0",
openapi_url="/api/v1/openapi.json",
docs_url="/api/v1/docs",
redoc_url="/api/v1/redoc",
middleware=[
Middleware(CORSMiddleware, allow_origins=["*"]),
Middleware(TrustedHostMiddleware, allowed_hosts=["*"]),
]
)

# Authentication middleware
@app.middleware("http")
async def auth_middleware(request: Request, call_next):
# JWT token validation
pass

# Rate limiting middleware
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
# Redis-based rate limiting
pass

2. Intent Registry Service

Purpose: Central storage and management of intent definitions

Key Responsibilities:

  • Intent CRUD operations
  • Version management and rollback
  • Validation and schema enforcement
  • Search and discovery
  • Audit trail and change tracking

Data Model:

class Intent(BaseModel):
id: UUID
tenant_id: UUID
name: str
version: int
definition: Dict[str, Any]
status: IntentStatus
created_at: datetime
updated_at: datetime
created_by: str
updated_by: str

class IntentStatus(str, Enum):
DRAFT = "draft"
ACTIVE = "active"
DEPRECATED = "deprecated"
ARCHIVED = "archived"

3. Orchestration Service

Purpose: Workflow execution and orchestration engine

Key Responsibilities:

  • Intent execution planning
  • Workflow orchestration
  • Error handling and retry logic
  • Progress tracking and monitoring
  • Event-driven processing

Workflow Definition:

class Workflow(BaseModel):
id: UUID
intent_id: UUID
steps: List[WorkflowStep]
status: WorkflowStatus
started_at: Optional[datetime]
completed_at: Optional[datetime]
error: Optional[str]

class WorkflowStep(BaseModel):
id: str
module: str
parameters: Dict[str, Any]
dependencies: List[str]
retry_policy: RetryPolicy
timeout: int

4. Module Services

Purpose: Domain-specific business logic implementation

Key Responsibilities:

  • Business logic execution
  • External system integration
  • Data transformation
  • Event publishing
  • Health monitoring

Module Interface:

class ModuleInterface(ABC):
@abstractmethod
async def execute(self, context: ExecutionContext) -> ModuleResult:
"""Execute module logic"""
pass

@abstractmethod
def get_capabilities(self) -> List[Capability]:
"""Return module capabilities"""
pass

@abstractmethod
def get_health_status(self) -> HealthStatus:
"""Return module health status"""
pass

Data Architecture

Database Design

Primary Database: PostgreSQL 15+ with Row-Level Security

Key Tables:

-- Tenants table
CREATE TABLE tenants (
id UUID PRIMARY KEY,
name VARCHAR(255) NOT NULL,
domain VARCHAR(255) UNIQUE NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);

-- Intents table
CREATE TABLE intents (
id UUID PRIMARY KEY,
tenant_id UUID NOT NULL REFERENCES tenants(id),
name VARCHAR(255) NOT NULL,
version INTEGER NOT NULL,
definition JSONB NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW(),
UNIQUE(tenant_id, name, version)
);

-- Workflows table
CREATE TABLE workflows (
id UUID PRIMARY KEY,
intent_id UUID NOT NULL REFERENCES intents(id),
status VARCHAR(50) NOT NULL,
started_at TIMESTAMP,
completed_at TIMESTAMP,
error_message TEXT,
created_at TIMESTAMP DEFAULT NOW()
);

-- Modules table
CREATE TABLE modules (
id UUID PRIMARY KEY,
tenant_id UUID NOT NULL REFERENCES tenants(id),
name VARCHAR(255) NOT NULL,
version VARCHAR(50) NOT NULL,
capabilities JSONB NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);

Row-Level Security Policies:

-- Enable RLS on all tables
ALTER TABLE intents ENABLE ROW LEVEL SECURITY;
ALTER TABLE workflows ENABLE ROW LEVEL SECURITY;
ALTER TABLE modules ENABLE ROW LEVEL SECURITY;

-- Tenant isolation policies
CREATE POLICY tenant_isolation_intents ON intents
FOR ALL TO app_user
USING (tenant_id = current_setting('app.current_tenant_id')::uuid);

CREATE POLICY tenant_isolation_workflows ON workflows
FOR ALL TO app_user
USING (intent_id IN (
SELECT id FROM intents
WHERE tenant_id = current_setting('app.current_tenant_id')::uuid
));

Caching Strategy

Redis: Multi-layer caching for performance

Cache Layers:

  1. Session Cache: User sessions and authentication tokens
  2. Query Cache: Database query results
  3. API Cache: API response caching
  4. Rate Limit Cache: Rate limiting counters

Cache Configuration:

# Redis configuration
redis_config = {
"host": "localhost",
"port": 6379,
"db": 0,
"decode_responses": True,
"socket_connect_timeout": 5,
"socket_timeout": 5,
"retry_on_timeout": True,
"health_check_interval": 30
}

# Cache decorator
def cache_result(expiry: int = 300):
def decorator(func):
async def wrapper(*args, **kwargs):
cache_key = f"{func.__name__}:{hash(str(args) + str(kwargs))}"
cached = await redis.get(cache_key)
if cached:
return json.loads(cached)

result = await func(*args, **kwargs)
await redis.setex(cache_key, expiry, json.dumps(result))
return result
return wrapper
return decorator

Security Architecture

Authentication

Azure Active Directory: Enterprise identity provider JWT Tokens: Stateless authentication Multi-Factor Authentication: Enhanced security

Authentication Flow:

class AuthService:
def __init__(self, azure_ad_client: AzureADClient):
self.azure_ad_client = azure_ad_client

async def authenticate(self, token: str) -> AuthResult:
"""Authenticate user with JWT token"""
try:
payload = jwt.decode(token, options={"verify_signature": False})
user_info = await self.azure_ad_client.get_user_info(payload["sub"])
return AuthResult(success=True, user=user_info)
except Exception as e:
return AuthResult(success=False, error=str(e))

async def authorize(self, user: User, resource: str, action: str) -> bool:
"""Authorize user action on resource"""
permissions = await self.get_user_permissions(user.id)
return f"{resource}:{action}" in permissions

Authorization

Role-Based Access Control (RBAC): User and service roles Attribute-Based Access Control (ABAC): Fine-grained permissions Resource-Level Permissions: Granular access control

Permission Model:

class Permission(BaseModel):
resource: str
action: str
conditions: Dict[str, Any]

class Role(BaseModel):
name: str
permissions: List[Permission]
inherits_from: Optional[str]

class User(BaseModel):
id: str
email: str
roles: List[str]
attributes: Dict[str, Any]

Quality Gates

Performance Requirements

  • API Response Time: < 200ms (95th percentile)
  • Throughput: 10,000 requests/second per service
  • Database: < 50ms query response time
  • Availability: 99.9% uptime SLA

Security Requirements

  • Authentication: All requests authenticated
  • Authorization: Fine-grained permission checking
  • Encryption: Data protected in transit and at rest
  • Audit Logging: Complete activity tracking

Reliability Requirements

  • Fault Tolerance: Circuit breakers and retries
  • Disaster Recovery: Multi-region deployment
  • Backup Strategy: Daily automated backups
  • Recovery Time: < 15 minutes MTTR

Implementation Guidelines

Code Standards

  1. Type Safety: Use type hints throughout
  2. Error Handling: Comprehensive error handling
  3. Logging: Structured logging with correlation IDs
  4. Testing: Unit, integration, and E2E tests
  5. Documentation: Comprehensive API documentation

Development Workflow

  1. Feature Branch: Create feature branch from main
  2. Development: Implement feature with tests
  3. Code Review: Peer review and approval
  4. Testing: Automated testing pipeline
  5. Deployment: Automated deployment to staging
  6. Production: Blue-green deployment to production

Monitoring and Observability

  1. Metrics: Application and business metrics
  2. Logging: Structured logging with correlation IDs
  3. Tracing: Distributed tracing across services
  4. Alerting: Proactive alerting on issues
  5. Dashboards: Real-time monitoring dashboards

Next Steps

  1. Review Blueprint: Understand the application architecture
  2. Setup Development Environment: Get started with local development
  3. Implement Core Services: Build the foundational services
  4. Add Module Plugins: Extend functionality with modules
  5. Deploy to Production: Deploy to production environment

This blueprint provides the foundation for building robust, scalable, and maintainable intent-driven applications.