Application Blueprint
The Quantum Platform Application Blueprint defines the complete application architecture, design patterns, and implementation guidelines for building intent-driven orchestration systems.
Blueprint Overview
This blueprint serves as the definitive guide for:
- Application Architecture: System design and component relationships
- Design Patterns: Reusable patterns for common scenarios
- Implementation Guidelines: Best practices and standards
- Quality Gates: Non-functional requirements and validation criteria
Application Architecture
Core Application Stack
graph TB
subgraph "Presentation Layer"
WebUI[Web UI<br/>Next.js + React]
MobileUI[Mobile UI<br/>React Native]
CLI[CLI Interface<br/>Python/Go]
end
subgraph "API Layer"
Gateway[API Gateway<br/>FastAPI]
Auth[Auth Service<br/>JWT + OAuth2]
RateLimit[Rate Limiting<br/>Redis-based]
end
subgraph "Business Logic Layer"
IntentService[Intent Service<br/>CRUD + Validation]
OrchestrationService[Orchestration Service<br/>Workflow Engine]
ModuleService[Module Service<br/>Plugin Architecture]
end
subgraph "Data Access Layer"
Repository[Repository Pattern<br/>Data Abstraction]
Cache[Cache Layer<br/>Redis]
Database[Database<br/>PostgreSQL]
end
subgraph "Infrastructure Layer"
MessageQueue[Message Queue<br/>Azure Event Hubs]
Storage[Blob Storage<br/>Azure Storage]
Monitoring[Monitoring<br/>OpenTelemetry]
end
WebUI --> Gateway
MobileUI --> Gateway
CLI --> Gateway
Gateway --> Auth
Gateway --> RateLimit
Gateway --> IntentService
Gateway --> OrchestrationService
IntentService --> Repository
OrchestrationService --> ModuleService
ModuleService --> MessageQueue
Repository --> Cache
Repository --> Database
ModuleService --> Storage
Gateway --> Monitoring
IntentService --> Monitoring
OrchestrationService --> Monitoring
Design Patterns
1. Intent-Driven Pattern
Purpose: Enable declarative system behavior through intent specifications
Implementation:
class Intent:
def __init__(self, tenant_id: str, name: str, definition: dict):
self.tenant_id = tenant_id
self.name = name
self.definition = definition
self.status = IntentStatus.DRAFT
self.version = 1
def validate(self) -> ValidationResult:
"""Validate intent definition against schema"""
pass
def execute(self) -> ExecutionResult:
"""Execute intent through orchestrator"""
pass
Benefits:
- Declarative configuration
- Self-documenting code
- Easy testing and validation
- Version control friendly
2. Repository Pattern
Purpose: Abstract data access and provide a clean interface for data operations
Implementation:
class IntentRepository:
def __init__(self, db: AsyncSession):
self.db = db
async def create(self, intent: Intent) -> Intent:
"""Create new intent"""
pass
async def get_by_id(self, intent_id: str) -> Optional[Intent]:
"""Get intent by ID"""
pass
async def get_by_tenant(self, tenant_id: str) -> List[Intent]:
"""Get all intents for tenant"""
pass
async def update(self, intent: Intent) -> Intent:
"""Update existing intent"""
pass
async def delete(self, intent_id: str) -> bool:
"""Delete intent"""
pass
Benefits:
- Data access abstraction
- Testability
- Database independence
- Consistent interface
3. Orchestrator Pattern
Purpose: Coordinate complex workflows and manage execution state
Implementation:
class WorkflowOrchestrator:
def __init__(self, intent_registry: IntentRegistry, module_registry: ModuleRegistry):
self.intent_registry = intent_registry
self.module_registry = module_registry
async def execute_intent(self, intent_id: str) -> ExecutionResult:
"""Execute intent through workflow orchestration"""
intent = await self.intent_registry.get(intent_id)
workflow = self.create_workflow(intent)
return await self.execute_workflow(workflow)
def create_workflow(self, intent: Intent) -> Workflow:
"""Create workflow from intent definition"""
pass
async def execute_workflow(self, workflow: Workflow) -> ExecutionResult:
"""Execute workflow with error handling and retry logic"""
pass
Benefits:
- Workflow management
- Error handling and recovery
- Progress tracking
- Scalability
4. Module Plugin Pattern
Purpose: Enable extensible business logic through pluggable modules
Implementation:
class ModuleInterface(ABC):
@abstractmethod
async def execute(self, context: ExecutionContext) -> ModuleResult:
"""Execute module logic"""
pass
@abstractmethod
def get_capabilities(self) -> List[Capability]:
"""Return module capabilities"""
pass
class ModuleRegistry:
def __init__(self):
self.modules: Dict[str, ModuleInterface] = {}
def register(self, name: str, module: ModuleInterface):
"""Register module"""
self.modules[name] = module
def get(self, name: str) -> Optional[ModuleInterface]:
"""Get module by name"""
return self.modules.get(name)
Benefits:
- Extensibility
- Modularity
- Testability
- Reusability
Application Components
1. API Gateway Service
Purpose: Central entry point for all client requests
Key Responsibilities:
- Request routing and load balancing
- Authentication and authorization
- Rate limiting and throttling
- Request/response transformation
- API documentation generation
Configuration:
# FastAPI application setup
app = FastAPI(
title="Quantum Platform API",
version="1.0.0",
openapi_url="/api/v1/openapi.json",
docs_url="/api/v1/docs",
redoc_url="/api/v1/redoc",
middleware=[
Middleware(CORSMiddleware, allow_origins=["*"]),
Middleware(TrustedHostMiddleware, allowed_hosts=["*"]),
]
)
# Authentication middleware
@app.middleware("http")
async def auth_middleware(request: Request, call_next):
# JWT token validation
pass
# Rate limiting middleware
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
# Redis-based rate limiting
pass
2. Intent Registry Service
Purpose: Central storage and management of intent definitions
Key Responsibilities:
- Intent CRUD operations
- Version management and rollback
- Validation and schema enforcement
- Search and discovery
- Audit trail and change tracking
Data Model:
class Intent(BaseModel):
id: UUID
tenant_id: UUID
name: str
version: int
definition: Dict[str, Any]
status: IntentStatus
created_at: datetime
updated_at: datetime
created_by: str
updated_by: str
class IntentStatus(str, Enum):
DRAFT = "draft"
ACTIVE = "active"
DEPRECATED = "deprecated"
ARCHIVED = "archived"
3. Orchestration Service
Purpose: Workflow execution and orchestration engine
Key Responsibilities:
- Intent execution planning
- Workflow orchestration
- Error handling and retry logic
- Progress tracking and monitoring
- Event-driven processing
Workflow Definition:
class Workflow(BaseModel):
id: UUID
intent_id: UUID
steps: List[WorkflowStep]
status: WorkflowStatus
started_at: Optional[datetime]
completed_at: Optional[datetime]
error: Optional[str]
class WorkflowStep(BaseModel):
id: str
module: str
parameters: Dict[str, Any]
dependencies: List[str]
retry_policy: RetryPolicy
timeout: int
4. Module Services
Purpose: Domain-specific business logic implementation
Key Responsibilities:
- Business logic execution
- External system integration
- Data transformation
- Event publishing
- Health monitoring
Module Interface:
class ModuleInterface(ABC):
@abstractmethod
async def execute(self, context: ExecutionContext) -> ModuleResult:
"""Execute module logic"""
pass
@abstractmethod
def get_capabilities(self) -> List[Capability]:
"""Return module capabilities"""
pass
@abstractmethod
def get_health_status(self) -> HealthStatus:
"""Return module health status"""
pass
Data Architecture
Database Design
Primary Database: PostgreSQL 15+ with Row-Level Security
Key Tables:
-- Tenants table
CREATE TABLE tenants (
id UUID PRIMARY KEY,
name VARCHAR(255) NOT NULL,
domain VARCHAR(255) UNIQUE NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
-- Intents table
CREATE TABLE intents (
id UUID PRIMARY KEY,
tenant_id UUID NOT NULL REFERENCES tenants(id),
name VARCHAR(255) NOT NULL,
version INTEGER NOT NULL,
definition JSONB NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW(),
UNIQUE(tenant_id, name, version)
);
-- Workflows table
CREATE TABLE workflows (
id UUID PRIMARY KEY,
intent_id UUID NOT NULL REFERENCES intents(id),
status VARCHAR(50) NOT NULL,
started_at TIMESTAMP,
completed_at TIMESTAMP,
error_message TEXT,
created_at TIMESTAMP DEFAULT NOW()
);
-- Modules table
CREATE TABLE modules (
id UUID PRIMARY KEY,
tenant_id UUID NOT NULL REFERENCES tenants(id),
name VARCHAR(255) NOT NULL,
version VARCHAR(50) NOT NULL,
capabilities JSONB NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
Row-Level Security Policies:
-- Enable RLS on all tables
ALTER TABLE intents ENABLE ROW LEVEL SECURITY;
ALTER TABLE workflows ENABLE ROW LEVEL SECURITY;
ALTER TABLE modules ENABLE ROW LEVEL SECURITY;
-- Tenant isolation policies
CREATE POLICY tenant_isolation_intents ON intents
FOR ALL TO app_user
USING (tenant_id = current_setting('app.current_tenant_id')::uuid);
CREATE POLICY tenant_isolation_workflows ON workflows
FOR ALL TO app_user
USING (intent_id IN (
SELECT id FROM intents
WHERE tenant_id = current_setting('app.current_tenant_id')::uuid
));
Caching Strategy
Redis: Multi-layer caching for performance
Cache Layers:
- Session Cache: User sessions and authentication tokens
- Query Cache: Database query results
- API Cache: API response caching
- Rate Limit Cache: Rate limiting counters
Cache Configuration:
# Redis configuration
redis_config = {
"host": "localhost",
"port": 6379,
"db": 0,
"decode_responses": True,
"socket_connect_timeout": 5,
"socket_timeout": 5,
"retry_on_timeout": True,
"health_check_interval": 30
}
# Cache decorator
def cache_result(expiry: int = 300):
def decorator(func):
async def wrapper(*args, **kwargs):
cache_key = f"{func.__name__}:{hash(str(args) + str(kwargs))}"
cached = await redis.get(cache_key)
if cached:
return json.loads(cached)
result = await func(*args, **kwargs)
await redis.setex(cache_key, expiry, json.dumps(result))
return result
return wrapper
return decorator
Security Architecture
Authentication
Azure Active Directory: Enterprise identity provider JWT Tokens: Stateless authentication Multi-Factor Authentication: Enhanced security
Authentication Flow:
class AuthService:
def __init__(self, azure_ad_client: AzureADClient):
self.azure_ad_client = azure_ad_client
async def authenticate(self, token: str) -> AuthResult:
"""Authenticate user with JWT token"""
try:
payload = jwt.decode(token, options={"verify_signature": False})
user_info = await self.azure_ad_client.get_user_info(payload["sub"])
return AuthResult(success=True, user=user_info)
except Exception as e:
return AuthResult(success=False, error=str(e))
async def authorize(self, user: User, resource: str, action: str) -> bool:
"""Authorize user action on resource"""
permissions = await self.get_user_permissions(user.id)
return f"{resource}:{action}" in permissions
Authorization
Role-Based Access Control (RBAC): User and service roles Attribute-Based Access Control (ABAC): Fine-grained permissions Resource-Level Permissions: Granular access control
Permission Model:
class Permission(BaseModel):
resource: str
action: str
conditions: Dict[str, Any]
class Role(BaseModel):
name: str
permissions: List[Permission]
inherits_from: Optional[str]
class User(BaseModel):
id: str
email: str
roles: List[str]
attributes: Dict[str, Any]
Quality Gates
Performance Requirements
- API Response Time: < 200ms (95th percentile)
- Throughput: 10,000 requests/second per service
- Database: < 50ms query response time
- Availability: 99.9% uptime SLA
Security Requirements
- Authentication: All requests authenticated
- Authorization: Fine-grained permission checking
- Encryption: Data protected in transit and at rest
- Audit Logging: Complete activity tracking
Reliability Requirements
- Fault Tolerance: Circuit breakers and retries
- Disaster Recovery: Multi-region deployment
- Backup Strategy: Daily automated backups
- Recovery Time: < 15 minutes MTTR
Implementation Guidelines
Code Standards
- Type Safety: Use type hints throughout
- Error Handling: Comprehensive error handling
- Logging: Structured logging with correlation IDs
- Testing: Unit, integration, and E2E tests
- Documentation: Comprehensive API documentation
Development Workflow
- Feature Branch: Create feature branch from main
- Development: Implement feature with tests
- Code Review: Peer review and approval
- Testing: Automated testing pipeline
- Deployment: Automated deployment to staging
- Production: Blue-green deployment to production
Monitoring and Observability
- Metrics: Application and business metrics
- Logging: Structured logging with correlation IDs
- Tracing: Distributed tracing across services
- Alerting: Proactive alerting on issues
- Dashboards: Real-time monitoring dashboards
Next Steps
- Review Blueprint: Understand the application architecture
- Setup Development Environment: Get started with local development
- Implement Core Services: Build the foundational services
- Add Module Plugins: Extend functionality with modules
- Deploy to Production: Deploy to production environment
This blueprint provides the foundation for building robust, scalable, and maintainable intent-driven applications.